Math 165 – Quiz 10C, area between curves – solutions

Problem 1 Find the area of the region in the first quadrant between the x-axis and the curves given by $y = 6x - x^2$ and $y = 12 - 2x$.

Solution From solving $6x - x^2 = 12 - 2x$

we get $x = 2$ and $x = 6$ as the x-coordinates of points where the two given curves meet. The curve $y = 12 - 2x$ and the x-axis (with equation $y = 0$) intersect at $x = 6$ as well. Interpreting the region as that between the x-axis and the lower of the two curves, we split it into the part A above $[0, 2]$ and the part B above $[2, 6]$.

Region A has area

$$\int_{0}^{2} 12 - 2x \ dx = \left[12x - x^2 \right]_{0}^{2} = 20.$$

Region B has area

$$\int_{2}^{6} 6x - x^2 \ dx = \left[3x^2 - \frac{x^3}{3} \right]_{2}^{6} = \frac{80}{3}.$$

So the total area equals $140/3$.