Math 165 - Practice Exam 2 - solutions

Problem 1 Find the derivatives of the following functions.

\[
\begin{align*}
 u &= 3x^6 + 5x^4 - 5x + 2000 \\
 y &= \frac{3x^2 + 2x + 1}{2x^4 - 1} \\
 z &= \tan x + \sin x \\
 w &= \frac{x \sin x - 3}{x^2 + 1}
\end{align*}
\]

Use only Rules for Differentiation and derivatives of basic functions. No simplifying necessary.

Solution.

\[
\begin{align*}
 \frac{du}{dx} &= 18x^5 + 20x^3 - 5 \\
 \frac{dy}{dx} &= \frac{(2x^4 - 1)(6x + 2) - 8x^3(3x^2 + 2x + 1)}{(2x^4 - 1)^2} \\
 \frac{dz}{dx} &= \sec^2 x + \cos x. \\
 \frac{dw}{dx} &= \frac{(\sin x + x \cos x)(x^2 + 1) - 2x(x \sin x - 3)}{(x^2 + 1)^2}.
\end{align*}
\]

Problem 2 A point \(P = (x, y) \) is traveling on the perimeter of a wheel with radius 14 inches. The origin \(O \) of the coordinate system is at the center of the wheel.

a) Express the angle \(\theta \) which the ray \(OP \) makes with the positive \(x \)-axis as a function of the \(x \)-coordinate of \(P \), given that the angle is in \([0, \pi] \). What is the angle when \(x = -7 \) inches?

b) Find the derivative of \(\theta \) with regard to \(x \) when \(x = -7 \) inches.

Solution. a) Since \(x = 14 \cos \theta \),
we can solve this for θ in $[0, \pi]$ using the inverse cosine,

$$\theta = \arccos\left(\frac{x}{14}\right).$$

When $x = -7$,

$$\theta = \arccos(-0.5) = \frac{2\pi}{3}.$$

b)

$$\frac{d\theta}{dx} = -\frac{1}{14\sqrt{1-(x/14)^2}} = -\frac{1}{\sqrt{14^2-x^2}}.$$

When $x = -7$, this equals $-1/(7\sqrt{3}) = -\sqrt{3}/21$.

Problem 3 Suppose a function $y = f(x)$ is such that

$$y - \frac{\pi}{2} + 2 \sin y = x.$$

a) Find the derivative of $f(x)$ at $x = 2$ given that $f(2) = \pi/2$.
b) Find an equation for the tangent line to the graph of $f(x)$ at $x = 2$.

Solution. Note that we have no way of getting an explicit formula for $f(x)$.

a) We differentiate both sides using implicit differentiation:

$$y' - 2y' \cos y = 1.$$

We can solve this for y':

$$y' = \frac{1}{1 - 2 \cos y}$$

and then substitute $y = \pi/2$ to get $y' = f'(2) = 1$ at the point when $x = 2$ and $y = \pi/2$.
b) We just computed the slope of that tangent line, it is 1! So it has equation

$$y = 1 \cdot (x - 2) + \pi/2.$$

Problem 4 A bike wheel of diameter 28 inches is spinning counterclockwise in one place at 10 revolutions per minute. Place the origin of a coordinate system at the center of the wheel and let P be the point $(20, 0)$ (with unit 1 inch on both axes). How fast is the distance between P and a point on the
perimeter of the wheel changing at the time when the point is at its highest position? Give exact answers.

Solution. Name the relevant quantities: Say Q is the point on the perimeter of the wheel, with coordinates x, y that are functions of time t. The distance between P and Q is the length of the hypotenuse of a right triangle, so

$$D^2 = (20 - x)^2 + y^2.$$

Also, Q sits on the perimeter of a circle of radius 14, so

$$x^2 + y^2 = 14^2$$

which means we can simplify the equation for D to

$$D^2 = 20^2 - 40x + 14^2.$$

Now, differentiate both sides with regard to time t:

$$2DD' = -40x'.$$

We'll still have to figure out D and x' at the given time. First, when Q is at the highest position, we have $x = 0$ and $y = 14$, so

$$D = \sqrt{20^2 + 14^2} = \sqrt{596}.$$

If we write θ for the angle that OQ makes with the positive x-axis, then

$$x = 14 \cos \theta$$

and therefore

$$x' = -14 \sin(\theta) \theta'.$$

like in the last problem. Next, the clue '10 counterclockwise revolutions per minute' means that the angle θ is changing at a constant, positive rate,

$$\theta' = 10 \cdot 2\pi$$

(in radians per minute). So,

$$x' = -14 \sin(\theta) \cdot 10 \cdot 2\pi.$$
At the highest position for Q, $\theta = \pi/2$, so the sine equals 1. Put all the pieces together to get

$$D' = -\frac{20x'}{D} = \frac{20 \cdot 14 \cdot 10 \cdot 2\pi}{\sqrt{596}} \approx 720.63$$

in inches per minute.

Problem 5 Consider the function

$$y = \sqrt[10]{\frac{3x + 4}{2x - 4}}.$$

a) Simplify $\ln y$, using rules for logarithms, as much as possible.

b) Find y' using logarithmic differentiation.

Solution. For a),

$$\ln y = \frac{1}{10} (\ln(3x + 4) - \ln(2x - 4)).$$

For b), differentiate both sides above:

$$\frac{y'}{y} = \frac{1}{10} \left(\frac{3}{3x + 4} - \frac{2}{2x - 4} \right).$$

Then multiply both sides by y (and STOP RIGHT THERE).