Problem 1 Find the derivatives of the following functions.

\[
\begin{align*}
 u &= 3x^6 + 5x^4 - 5x + 2000 \\
 y &= \frac{3x^2 + 2x + 1}{2x^4 - 1} \\
 z &= \tan x + \sin x \\
 w &= \frac{x\sin x - 3}{x^2 + 1}
\end{align*}
\]

Use only Rules for Differentiation and derivatives of basic functions. No simplifying necessary.

Problem 2 A point \(P = (x, y) \) is traveling on the perimeter of a wheel with radius 14 inches. The origin \(O \) of the coordinate system is at the center of the wheel.

a) Express the angle \(\theta \) which the ray \(OP \) makes with the positive \(x \)-axis as a function of the \(x \)-coordinate of \(P \), given that the angle is in \([0, \pi]\). What is the angle when \(x = -7 \) inches?

b) Find the derivative of \(\theta \) with regard to \(x \) when \(x = -7 \) inches.

Problem 3 Suppose a function \(y = f(x) \) is such that

\[
y - \frac{\pi}{2} + 2\sin y = x.
\]

a) Find the derivative of \(f(x) \) at \(x = 2 \) given that \(f(2) = \pi/2 \).

b) Find an equation for the tangent line to the graph of \(f(x) \) at \(x = 2 \).

Problem 4 A bike wheel of diameter 28 inches is spinning counterclockwise in one place at 10 revolutions per minute. Place the origin of a coordinate system at the center of the wheel and let \(P \) be the point \((20, 0)\) (with unit 1 inch on both axes). How fast is the distance between \(P \) and a point on the perimeter of the wheel changing at the time when the point is at its highest position? Give exact answers.
Problem 5 Consider the function

\[y = \sqrt[10]{\frac{3x + 4}{2x - 4}}. \]

a) Simplify \(\ln y \), using rules for logarithms, as much as possible.
b) Find \(y' \) using logarithmic differentiation.